Plot MrSGUIDE regression tree
plotTree( mrsobj, digits = 3, height = "600px", width = "100%", nodefontSize = 16, edgefontSize = 14, minNodeSize = 15, maxNodeSize = 30, nodeFixed = FALSE, edgeColor = "#8181F7", highlightNearest = list(enabled = TRUE, degree = list(from = 50000, to = 0), hover = FALSE, algorithm = "hierarchical"), collapse = list(enabled = FALSE, fit = TRUE, resetHighlight = TRUE, clusterOptions = list(fixed = TRUE, physics = FALSE)), alphaInd = 3 )
mrsobj | MrSGUIDE object |
---|---|
digits | digits for split threshold |
height | figure height |
width | figure width |
nodefontSize | node font size |
edgefontSize | edge font size |
minNodeSize | minimal node size |
maxNodeSize | maximum node size |
nodeFixed | whether you can drag node |
edgeColor | edge color |
highlightNearest | choose node will highlight nearby |
collapse | list, collapse or not using double click on a node |
alphaInd | 1 is original alpha, 2 is individual level alpha, 3 is overall alpha |
A list contains plot figure
The tree plot uses visNetwork
function.
A data frame contain each elements used for tree plot.
A treatment effects plot of each node.
library(MrSGUIDE) set.seed(1234) N = 200 np = 3 numX <- matrix(rnorm(N * np), N, np) ## numerical features gender <- sample(c('Male', 'Female'), N, replace = TRUE) country <- sample(c('US', 'UK', 'China', 'Japan'), N, replace = TRUE) z <- sample(c(0, 1), N, replace = TRUE) # Binary treatment assignment y1 <- numX[, 1] + 1 * z * (gender == 'Female') + rnorm(N) y2 <- numX[, 2] + 2 * z * (gender == 'Female') + rnorm(N) train <- data.frame(numX, gender, country, z, y1, y2) role <- c(rep('n', 3), 'c', 'c', 'r', 'd', 'd') mrsobj <- MrSFit(dataframe = train, role = role) plotObj <- plotTree(mrsobj) #plotObj$treePlot plotObj$nodeTreat ## node information#> Estimate SE Assignment Outcome Node Quantity ymin ymax #> 2 0.995726 0.189337 z.1 y1 2 Node: 2; y1 0.6246255 1.3668265 #> 21 2.062110 0.180745 z.1 y2 2 Node: 2; y2 1.7078498 2.4163702 #> 22 -0.227258 0.200356 z.1 y1 3 Node: 3; y1 -0.6199558 0.1654398 #> 211 -0.036876 0.208765 z.1 y2 3 Node: 3; y2 -0.4460554 0.3723034 #> zalpha #> 2 1.96 #> 21 1.96 #> 22 1.96 #> 211 1.96plotObj$trtPlot ## treatment effect plot